Throwback Thursday – Direct from the classroom: Challenges & Successes with Singapore Math implementations

For our final post this summer, we thought it would be interesting to look at other challenges schools face in their adoptions. When I re-read a post from the past I always take away something different because I am in a different place with my own experience. Perhaps you are as well!


Direct from the classroom: Challenges & Successes with Singapore Math implementations

Originally published 12/1/2012

Some teacher challenges & successes with Singapore math one year or three months after adopting the program are below. Click to see larger images.

During follow-up in-services, I like to have teachers meet in grade level groups and spend time discussing the challenges and successes they have had thus far with their teaching of Singapore Math. Each grade level is then asked to list these challenges and successes on a poster and share with the group as a whole. This allows us time to compare and share lessons from the content fresh on their minds.

There is so much challenge the first year when implementing a new curriculum, it’s helpful to take a few moments to reflect on how many successes the teachers and students have had. These posters then guide subsequent teacher learning as we focus on the concepts that they are finding challenging.

 

 

 

 

Share:

Word Problem Wednesday – Cards

Summer’s here, but you’re missing your math? Don’t despair – we’ve got you covered. Check the site each week for one whopper of a word problem that’s sure to challenge!


Our final problem of the summer comes from Primary Mathematics Challenging Word Problems 6 by Joseph D. Lee, published in 2006 by Panpac Education Private Limited. 

The number of Jason’s cards and the number of Frederick’s cards are in the ratio of 5:8. The number of Frederick’s cards and the number of Steven’s cards are in the ratio of 4:3. If Jason has 18 fewer cards than Frederick, how many cards does Steven have?

Submit your solutions and we’ll post all interesting strategies next week.


Last week’s problem and solution:

Mr. Seow borrowed a certain amount from a bank, which charged him an interest of 3.5% per year. If he owed the bank $4347 at the end of the year, how much did he borrow from the bank?

Whew! How did you do?

Share:

Throwback Thursday – Bar Model Solutions – by Students

Over the summer, we thought it would be fun to run some of the most popular posts from the past. It’s always interesting to see how students’ minds work. When I re-read a post from the past I always take away something different because I am in a different place with my own experience. Perhaps you are as well!


Bar Model Solutions – by Students!

Originally published 4/12/2016

After the post on Assessing Bar Model Solutions went up, Beth Curran sent a message: “We just did that problem!” She agreed to share some student work:


boys and girls 2

boys and girls 3

boys and girls 5

And when the students didn’t draw a model:

boys and girls 4

I see this as a comparison problem:

thinking blocks

5 units -> 125 students
1 unit -> 125 ÷ 5 = 25
7 units for boys -> 7 x 25 = 175 boys in all

(That’s the Thinking Blocks Model Drawing tool that allows you to insert your own word problems and solve – or you can use the pre-made questions!)

 

Share:

Word Problem Wednesday – Mr. Seow

Summer’s here, but you’re missing your math? Don’t despair – we’ve got you covered. Check the site each week for one whopper of a word problem that’s sure to challenge!


This week’s problem comes from Visible Thinking in Mathematics 5B by Ammiel Wan and Chelsia Loh, published in 2011 by Marshall Cavendish International (Singapore) Private Limited. 

Mr. Seow borrowed a certain amount from a bank, which charged him an interest of 3.5% per year. If he owed the bank $4347 at the end of the year, how much did he borrow from the bank?

Submit your solutions and we’ll post all interesting strategies next week.


Last week’s problem and solution:

Cynthia had $16.75. She withdrew more cash from an ATM before shopping. After spending $17.50 on a box of cookies and $23.40 on a box of chocolates, she had $35.85 left. How much money did she withdraw from the ATM?

Whew! How did you do?

Share:

Throwback Thursday – It can’t all be Singapore Math…

Over the summer, we thought it would be fun to run some of the most popular posts from the past. Here’s a look at some misconceptions around Singapore Math and Common Core Standards. When I re-read a post from the past I always take away something different because I am in a different place with my own experience. Perhaps you are as well!


It can’t all be Singapore Math…

Originally published 12/29/2014

This tweet posted by the National Council on Teacher Quality (@NCTQ) caught my eye:

NCTQ_Tweet

Now, I’ve heard decomposing called “branching” but can’t remember ever seeing this in a Singapore textbook. Where did this problem come from?

It’s nice that NCTQ recognizes Singapore’s Math as “tops in the world.” But it’s discouraging to see methods and terminology that are not a part of the Singapore curriculum attributed to it. Especially in the context of the nasty debate about CCSS. And especially since Singapore’s math curriculum–with its rigor, coherence, and focus–is often cited as a basis for more rigorous standards, including CCSS.

The problem posted is based on the concept of “Number Bonds,” which calls for students to decompose numbers (this is the term used in Singapore and in all major Singapore Math® textbooks distributed in the U.S.). Below, I’ve posted some examples of how this concept is presented in Singapore Math® series available in both the U.S. and Singapore.

This matter points to my BIG concern: As publishers and others adapt Singapore’s Math for the American market, new approaches creep in. These often are not based on the curriculum that helped Singapore’s students go from mediocre to best in the world in a dozen years. I’ve written about this in my comparison of Singapore math textbook series available in the United States.

So my plea to NCTQ: please use examples from an actual Singapore mathematics text when citing the components that make it so successful. And feel free to ask if I can help you find those examples.

Number Bonds problems in Singapore Math® textbooks

Here are some materials covering Number Bonds and “decomposing” numbers from actual Singapore textbooks:

From My Pals are Here, the most-used materials in Singapore:

MPAH 3A Mental Addition

From the U.S. Edition of Primary Mathematics, available in North America since 2003:

PM US 3A Mental Addition

From the Common Core Edition of Primary Mathematics, released in the U.S. market in 2014:

PM CC 3A Mental Addition_0001

And finally, from Math in Focus:

MiF_3a_mental_math

 

UPDATE:

Ugh! One more similar tweet from NCTQ.

NCTQ_tweet_#2

 

 

 

Share: