Word Problem Wednesday – Plates and Bowls

Summer’s here, but you’re missing your math? Don’t despair – we’ve got you covered. Check the site each week for one whopper of a word problem that’s sure to challenge!


This week’s problem comes from Math in Focus Enrichment 4A by Ang Kok Cheng, published in 2015 by Marshall Cavendish International (Singapore) Private Limited.

Two plates and 3 bowls weigh 2 1/5 lbs. Five plates and 6 bowls weigh 4 9/10 lbs. Find the weight of one plate.

Submit your solutions and we’ll post all interesting strategies next week.


Last week’s problem and solution:

A grocer sold a carton of apples to some customers. The first customer tasted one apple and bought half the remaining apples. The second and third customers did the same. The fourth customer also tasted one apple and bought the remaining 23 apples. How many apples were there in the carton at first?

Whew! How did you do?

Once again, reader Shirley Davis submitted a solution:

Share:

Throwback Thursday – Anchor Tasks Demystified

Over the summer, we thought it would be fun to run some of the most popular posts from the past. It’s mid-July and teachers are already getting ready to go back to school. Here’s an article on planning for the concrete component of a lesson.


Anchor Tasks Demystified

Originally published 2/15/2016

With performance-based standards and 21st-century skill sets teachers are asked to teach mathematics with an emphasis on problems solving and inquiry learning, but how?  The answer is simple, with anchor tasks, of course, BUT HOW?

I have attended several seminars and sessions that have done a great job of explaining what an anchor task is and how using anchor tasks can transform my instruction while meeting the needs of all learners. Few, however, have explained how to implement them into my daily lessons.  I have been told anchor tasks are right there in the materials, but I have yet to come across a section labeled, “Anchor Task.”

In a recent seminar, hosted by Dr. Yeap Ban Har, I finally got the explanation I had been searching for… I had been looking in the wrong place!  Anchor tasks are not found in the Primary Mathematics Teacher’s Guides, but rather in the textbooks.

Dr. Yeap described the evolution of the term on his Facebook page:

Basically, an Anchor Task is the concrete component of any lesson!

How do I find an Anchor Task?

In Primary Mathematics 4A, Lesson 3.6c (Standards Edition) students will learn to interpret the fraction of a set as a whole number times a fraction.  The Teacher’s Guide leads teachers through an effective lesson where the teacher demonstrates how to find 1/3  of 24 using a couple of different methods.

TG - 4A - 3.6c_Page_1


I’ve included links to this same lesson in:


4A Standards TB p100To approach this lesson with more of an emphasis on inquiry learning, look to the textbook.

To create an anchor task, I took the example at the top of the page, find 1/4 of 20, and rewrote it as a word problem.  Students worked in partner groups to solve the following: There are 20 M&Ms in a bag. Three friends each eat  1/4 of the bag of M&Ms.  How many M&Ms did they eat altogether? Students were asked to find multiple ways of solving the problem and were given 20 chips to use if needed. Because our school has several Math Teachers that teach multiple grades, we devised a lesson planning document. (<-Click for a copy if you’d like to use it to plan your lessons)

Planning Sheet 4A - 3.6c Top

As students worked, I circulated around the room and quickly determined which students had mastered how to find  1/4 of 20, which students still needed support with this concept and which students were able to apply that concept to find  3/4 of 20.  Were they in the concrete, representational or abstract phase?

Planning Sheet 4A 3.6c MiddleAfter about five minutes, I gathered the students to share their methods of solving the problem.   This is where my direct instruction came in.  As students shared their strategies, I organized their independent learning into three methods.

I anticipated their strategies in my planning document and during my direct instruction I was sure to include any methods not discovered by my students on their own.

Planning Sheet 4A - 3.6c BottomStudents were then given the task of applying their newly discovered knowledge to solve the problems from the textbook, with my support, if needed.
The lesson ended with a journal prompt that was closely related to the concept learned.

A well-designed anchor task will engage students in the concrete and representational phases of learning a new concept.

Students will make connections with prior knowledge, reason and think logically to apply what they know to solve a problem with a partner or small group.  All students will be given time to work in the concrete phase to develop and hone their conceptual understanding.   As students are ready, they will naturally explore the representational or abstract phases of learning and discover strategies, or methods, for solving the given problem.  Sharing methods also allows students to communicate mathematically to explain and defend their thinking and consolidate their learning.

Share:

Word Problem Wednesday – Apples

Summer’s here, but you’re missing your math? Don’t despair – we’ve got you covered. Check the site each week for one whopper of a word problem that’s sure to challenge!


This week’s problem comes from Primary Mathematics Intensive Practice 4A, published in 2004 by SingaporeMath.com

A grocer sold a carton of apples to some customers. The first customer tasted one apple and bought half the remaining apples. The second and third customers did the same. The fourth customer also tasted one apple and bought the remaining 23 apples. How many apples were there in the carton at first?

Submit your solutions and we’ll post all interesting strategies next week.


Last week’s problem and solution:

There are 3/5 as many cows as sheep on a farm. If there are 240 cows and sheep altogether, how many more sheep than cows are there?

Whew! How did you do?

Once again, astute reader Shirly Davis sent in a solution:

 

Share:

Throwback Thursday – On the Topic of Math Sprints and Anxiety

Over the summer, we thought it would be fun to run some of the most popular posts from the past. When I re-read a post from the past I always take away something different because I am in a different place with my own experience. Perhaps you are as well!


On the Topic of Math Sprints and Anxiety

Originally published 4/30/15

Reflecting on my time at the two national math educator’s meetings, one interesting dichotomy appeared over timed fact tests. On the one side was Jo Boaler stating that timed tests are the root of math anxiety. Pushback came from others, most notably Greg Tang and Scott Baldridge pointing out that kids are timed in real life. They are put under pressure in real life. Students should learn from these experiences, not freak out over them.

It’s a powerful discussion: How do we get kids from fluency (I can use strategies to solve 7 x 8) to automaticity (I just know 7 x 8)? Do we need to get them to automaticity? Do timed tests create math anxiety? Is there spelling test anxiety? Should the key anxiety word be “test”, not “math”?

This conversation appeared recently on twitter after someone posted the “How to Give a Math Sprint” pdf from this site:


Yep, I’d be worried if kids who couldn’t make connections were timed, too.

I’m a proponent of Math Sprints; thoughtfully structured timed tests designed to practice one skill. Sprints are not your typical timed test. Students compete against themselves to improve the number of problems completed in one minute. Then the sprints are thrown away, not recorded in a grade book. They are practice. Period. And just one way to practice math facts.

Do Sprints harm students or cause math anxiety?

Not when administered correctly. I work with a school for students with ADHD and learning disabilities. Initially, teachers there said things like, “I can’t time my kids, they are slow processors”. It turns out that students at this school LOVE sprints. They can always improve by at least one problem on the second sprint. With all the content flying at them, practicing facts is one thing they can do and feel successful with.

Allison Coates runs the non-profit Math Walk Institute that works with schools and students to build a bridge to Algebra.

In every school we’ve ever worked, nearly all students enjoy sprints. They don’t see them as tests if the teacher doesn’t present them as tests. They see them as another fun game they can play against themselves (or against the teacher). Practice makes permanent their knowledge, and students love knowing they have knowledge. Knowledge is power.

Are Sprints from Singapore?

Nope. Sprints were created by Dr. Yoram Sagher as a fluency program to work with any curriculum. I’ve considered them a way to compensate for differences between Singapore and the U.S. In Singapore, parents drill fact fluency while schools teach the conceptual understanding. It’s not unusual for a first grader in Singapore to know all their math facts. It’s the school’s job to then get the understanding of multiplication into such a student. Contrast that with the U.S., where it is less likely that parents practice math facts at home with their child. Few American programs include a fluency component, often farming it out to the web or an iPad app.

Scott Baldridge has a great blog post on sprints: Fluency without Equivocation. I suggest you read it now.

My favorite Sprint books are Differentiated Math Sprints as they offer two difficulty levels with the same answers.

Eureka Math Sprints are aligned to Eureka Math (referenced in Scott Baldridge’s post above).

Wondering about the emphasis on math facts? Read: Why Mental Arithmetic Counts: Brain Activation during Single Digit Arithmetic Predicts High School Math Scores

Share:

Word Problem Wednesday – Cows and Sheep

Summer’s here, but you’re missing your math? Don’t despair – we’ve got you covered. Check the site each week for one whopper of a word problem that’s sure to challenge!


This week’s problem comes from an oldie, but goodie: Mathematics Topical Worksheets 6A by Lawrence Loh, published in 2001 by SNP Education Pte Ltd.

There are 3/5 as many cows as sheep on a farm. If there are 240 cows and sheep altogether, how many more sheep than cows are there?

Submit your solutions and we’ll post all interesting strategies next week.


Last week’s problem and solution:

Rae bought 100 oranges and 46 apples. After she used an equal number of oranges and apples for making fruit juice. The ratio of her remaining oranges to apples became 5:2. Find the total number of oranges and apples she used.

Whew! How did you do?

Here’s a solution sent in by reader Shirley Davis:

 

 

Share: